7. Component additive approach to predict cement paste rheology considering mineral and particle heterogeneity on different scales (CONCERT)

Principal investigator(s) – PI

  • Prof. Dr.-Ing. Michael Haist
    Leibniz Universität Hannover, Institut für Baustoffe
  • Prof. Dr.-Ing. Horst-Michael Ludwig
    Bauhaus-Universität Weimar, Finger-Institut für Baustoffkunde
  • Prof. Dr. habil. Thorsten Schäfer
    Friedrich Schiller Universität Jena, Institut für Geowissenschaften, Lehrstuhl für Angewandte Geologie

Researcher(s) in-charge- RI

  • Dr. Frank Heberling
    Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Diposal
  • Dr. Daniel Jara Heredia
    Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften
  • M.Sc. Melanie Heinemann
    Bauhaus-Universität Weimar, Finger-Institut für Baustoffkunde
  • M.Sc. Julian Link
    Leibniz Universität Hannover, Institut für Baustoffe
  • Dr. Johannes Luetzenkirchen
    Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Diposal
  • Dr.-Ing. Thomas Sowoidnich
    Bauhaus-Universität Weimar, Finger-Institut für Baustoffkunde
  • M.Sc. Bastian Strybny
    Leibniz Universität Hannover, Institut für Baustoffe

Associated researcher – AR

  • M.Sc. Steffen Hellmann
    Friedrich Schiller Universität Jena, Institut für Geowissenschaften, Lehrstuhl für Angewandte Geologie
  • Dr. Teba Gil-Diaz
    Friedrich Schiller Universität Jena, Institut für Geowissenschaften, Lehrstuhl für Angewandte Geologie

Former Members

  • Yannick Ruppert
    Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Diposal

Subject Area

Construction Material Sciences, Chemistry, Building Physics



Project identifier

Deutsche Forschungsgemeinschaft (DFG) – Projekt number 387096404

Project Description

The rheological properties of fresh concrete are mainly determined by the properties of the cement paste contained therein, which generally exhibits pronounced non-Newtonian flow behaviour characterized by a yield stress and pronounced thixotropy. The rheological properties are strongly influenced by the hydration of the cement, by the system temperature and by shearing processes (resulting from e.g. material flow or vibration applied by compaction). All factors lead to a variation in the particle inventory and the carrier fluid composition, whereby the fundamental mechanisms are not yet fully understood. The objective of the requested project is to establish the predictability of the rheological properties of superplasticized cement paste on the basis of the influencing parameters mentioned and as a function of the materials used (i.e. cement, water and superplasticizer). For this, surface complexation models are to be derived by means of AFM-measurements of the constituent minerals of the cement and its hydration products considering the action of superplasticizers. Using the so-called component approach, these then allow statistically firm determinations of the interaction of particles consisting out of arbitrary fractions of these minerals. By conducting measurements with variation in particle size and surface roughness, the effect of granulometry is considered. Changes in phase inventory and granulometry of the system are captured by extensive chemical and physical investigations and subsequently modelled. Through the use of radio-tracers, determinations can be made regarding the adsorption behaviour of superplasticizers to the surface of cement particles or rather the integration of superplasticizer within the hydration products. The results obtained from these investigations will be combined with extensive measurements of the cement paste rheology. These rheological properties will be measured both at atmospheric and elevated isotropic pressure, as well as applying additional vibration and temperature. By combination of in-situ and ex-situ measurements, changes within the particle and solution inventory as a result of shear can then be used, in combination with the aforementioned component approach, to develop a prediction model for rheological properties. The intended model approach is characterized by two characteristics: It distinguishes between the contribution of the colloidal and non-colloidal inventory towards the rheology and allows thereby a distinctly improved definition of the effects such as temperature and hydration upon the decisive particle inventory (meaning the colloidal components). Furthermore, the model will be probabilistically formulated and account for both the heterogeneity of the cement stemming from the mineral phase composition, as well as resulting from agglomeration or shear banding. The PP-proposal at hand has been closely coordinated with other PP-submitters. The planned cooperations are described in detail.


Present here a list of your publications (maximum 5) that are resulted from this project and SPP-collaborations.

  1. Bogner, J. Link, M. Baum, M. Mahlbacher. T. Gil-Diaz, J. Lützenkirchen, T. Sowoidnich, F. Heberling, T. Schäfer, H.-M. Ludwig, F. Dehn, H.S. Müller, M. Haist, Early hydration and microstructure formation of Portland cement paste studied by oscillation rheology, isothermal calorimetry, 1H NMR relaxometry, conductance and SAXS. In: Cement and Concrete Research vol. 130 (2020), 105977
  2. Link, T. Sowoidnich, C. Pfitzner, T. Gil-Diaz, F. Heberling, J. Lützenkirchen, T. Schäfer, H.-M. Ludwig, M. Haist, Influence of cement hydration and temperature onto thixotropy of cement paste, Materials (Basel). 13 (2020) 1853
  3. Sowoidnich, J. Link, F. Heberling, J. Lützenkirchen, T. Gil-Diaz, H.-M. Ludwig, T. Schäfer, M. Haist, Influence of hydra-tion on the rheological behaviour of tricalcium silicate pastes’ 2nd International RILEM Conference Rheology and Processing of Construction Materials (RheoCon2) (2019), Dresden; 11 p.
  4. Haist, J. Link, D. Nicia, S. Leinitz, C. Baumert, T. von Bronk, D. Cotardo, M. Eslami Pirharati, S. Fataei, H. Garrecht, C. Gehlen, I. Hauschildt, S. Ivanova, I. Jesinghausen, C. Klein, H.-W. Krauss, L. Lohaus, D. Lowke, O. Mazanec, S. Pawelczyk, U. Pott, J.J. Radebe, N. W. Riedmiller, H.-J. Schmid, W. Schmidt, E. Secrieru, D. Stephan, M. Thiedeitz, V. Wilhelm, M. Mechtcherine, Interlaboratory study on rheological properties of cement pastes and reference substances – Comparability of measurements performed with different rheometers and measurement geometries, Mater. Struct. 53 (2020)
  5. C  Lu, M. Haist, D. Ivanov, C. Jakob, D. Jansen, S. Leinitz, J. Link, V. Mechtcherine, J. Neubauer, J. Plank, W. Schmidt, C. Schilde, C. Schröfl, T. Sowoidnich, D. Stephan, Characterization data of reference cement CEM I 42.5 R used for priority program DFG SPP 2005 “Opus Fluidum Futurum – Rheology of reactive, multiscale, multiphase construction materials” In: Data in Brief vol. 27 (2019) 104699